通知公告

通知公告

您的位置:首页  通知公告

基金委关于发布可解释、可通用的下一代人工智能方法重大研究计划2022年度项目指南的通告
发布时间:2022-05-19

各有关单位、各位老师:

国家自然科学基金委员会现发布可解释、可通用的下一代人工智能方法重大研究计划2022年度项目指南。请各有关单位仔细研读指南和形式审查等条件要求,积极申报。现将有关事宜通知如下:

一、科学目标

  本重大研究计划面向以深度学习为代表的人工智能方法鲁棒性差、可解释性差、对数据的强依赖等基础科学问题,挖掘机器学习的基本原理,发展可解释、可通用的下一代人工智能方法,并推动人工智能方法在科学领域的创新应用。

二、核心科学问题

  本重大研究计划针对可解释、可通用的下一代人工智能方法的基础科学问题,围绕以下三个核心科学问题开展研究:

(一)深度学习的基本原理

深入挖掘深度学习模型对超参数的依赖关系,理解深度学习背后的工作原理,建立深度学习方法的逼近理论、泛化误差分析理论和优化算法的收敛性理论。

  (二)可解释、可通用的下一代人工智能方法

  通过规则与学习结合的方式,建立高精度、可解释、可通用且不依赖大量标注数据的人工智能新方法。开发下一代人工智能方法需要的数据库和模型训练平台,完善下一代人工智能方法驱动的基础设施。

  (三)面向科学领域的下一代人工智能方法的应用

  发展新物理模型和算法,建设开源科学数据库、知识库、物理模型库和算法库,推动人工智能新方法在解决科学领域复杂问题上的示范性应用。

三、2022年度资助研究方向

  (一)培育项目

围绕上述科学问题,以总体科学目标为牵引,2022年度对于探索性强、选题新颖的申请项目,将以培育项目方式予以资助。研究方向如下(申报项目须覆盖以下单一方向中列出的部分或全部内容):

1、深度学习的表示理论和泛化理论

  研究多层全联接网络、卷积网络(以及其它带对称性的网络)、图神经网络、transformer网络、循环神经网络等模型的逼近性质,发展相应的高维函数空间理论和泛化误差分析理论,并在实际数据集上检验以上理论。

2、深度学习的训练动力学

  研究深度学习的损失景观,包括但不限于:临界点的分布及其嵌入结构、极小点的连通性等;深度学习中的非凸优化问题、优化算法的正则化理论和收敛行为;神经网络的过参数化和训练过程对于超参的依赖性问题、基于极大值原理的训练方法、训练时间复杂度和训练困难等问题;循环神经网络记忆灾难问题、编码-解码方法与Mori-Zwanzig方法的关联特性等。

3、微分方程与机器学习方法

  机器学习算法在微分方程正反问题求解方面的应用,需突破传统数值算法的瓶颈,实现正反问题的高效求解;高维微分方程的正则性理论与算法;微分方程解算子的逼近方法(如通过机器学习方法获得动理学方程、弹性力学方程、流体力学方程、Maxwell方程以及其它常用微分方程的解算子);微分方程经典算法和基于机器学习方法的融合;微分方程方法在机器学习中的应用(如用微分方程设计新的机器学习模型,设计和分析网络结构等)。

4、数据驱动与知识驱动融合的人工智能

  建立数据驱动的机器学习与知识驱动的符号计算相融合的新型人工智能理论和方法,突破神经网络模型不可解释的瓶颈;研究知识表示与推理框架、大规模隐式表达的知识获取、多源异构知识融合、知识融入的预训练模型、知识数据双驱动的决策推理等;探索不同场景中的应用。

5、安全可靠的下一代人工智能

  面向数据、模型和算法,构建安全可靠的人工智能方法。研究分布式去中心化学习、联邦学习、密码学等技术,构建隐私保护的数据应用新范式;研究深度学习模型在对抗样本、数据投毒、后门攻击等情况下的鲁棒性和安全性,发展对抗鲁棒和安全的新模型与学习方法;研究存在样本噪声、分布外数据等场景下的可靠机器学习方法、研究因果驱动的鲁棒决策和可靠推理;探索不同场景中的应用。

6、人工智能驱动的下一代科学计算理论及应用

  将机器学习与电子多体问题相结合,建立薛定谔方程数值解、第一性原理计算、增强采样、自由能计算、粗粒化分子动力学等的机器学习方法,探索机器学习在物质体系研究中的应用。

  针对典型的物理、化学、材料、生物、燃烧等领域的多尺度问题和动力学问题,通过融合物理模型与机器学习方法,探索复杂物理、化学、材料、生物等体系变量隐含物理关系的挖掘方法,建立构效关系的数学表达,构建具有通用性的跨尺度人工智能辅助计算理论和方法,解决典型复杂多尺度计算问题。

  (二)重点支持项目

  围绕核心科学问题,以总体科学目标为牵引,对于前期研究成果积累较好、对总体目标在理论和关键技术上有较大贡献的申请项目,将以重点支持项目方式予以资助。建议研究内容包括,但不限于以下方向:

1、面向复杂数据的、可通用的人工智能算法框架

  针对多尺度复杂数据处理问题,研究多尺度表示的跨模态人工智能框架,适用于视频、语音、自然语言、点云、地理数据等不同模态的数据,实现小样本(相同精度下降低样本需求一万倍以上)、可解释、跨模态(不少于3个模态)和感知决策一体化方法。

2、新一代非结构化数据管理方法

  研究海量复杂非结构化数据与人工智能应用一体化系统的构建方法,包括基础数据存储、用户自定义领域数据模型在线构建、自主研发非结构化数据查询语言与优化理论、跨域和跨库非结构化数据的查询融合理论等,支撑下一代人工智能方法在跨领域、多维度(关系、向量、图等)、多粒度数据(不少于3种粒度)的应用。

3、深度学习隐私保护计算新型体系框架与模型

  针对隐私性需求,研究可证明安全、可实用的人工智能隐私保护方法新框架,包括但不限于:适用于不同场景的多方隐私计算框架,多源异质数据的高效协同建模方法,基于全同态计算的、低内存占用的隐私保护深度学习方法,研究符合《中华人民共和国个人信息保护法》中匿名化要求的、模型精度跌幅可控(精度下降不大于1%)的数据可信发布技术等。

4、面向功能分析的智能化几何造型方法

  设计能保持几何约束和物理结构、具有可解释性和收敛阶的智能建模方法,构建可解释的、面向功能分析的智能方法以及科学工程计算中几何模型设计与功能分析一体化方法,突破目前工业软件中几何设计与物理性能分析割裂的现状。

5、人工智能驱动的下一代微观科学计算平台建设与应用

  发展基于人工智能的高精度、高效率的第一性原理方法;面向物理、化学、材料、生物等领域的实际复杂问题,建立多尺度模型,实现高精度、大尺度和高效率的分子模拟;建立人工智能与科学计算双驱动的“软-硬件协同优化”方法和高性能计算专用平台。

6、人工智能框架下的宏观复杂反应流动多尺度建模与应用

  面向空天发动机等重大需求场景,针对燃烧模型精度低、数值模拟计算效率低等问题,研究从原子尺度到宏观尺度的深度学习算法,发展兼容传统数值模拟和面向超大规模并行的新一代计算方法;发展航空发动机燃烧不稳定性等关键问题的识别、预测和分析的机器学习方法;针对高雷诺数非稳态超声速燃烧的湍流问题,研究湍流与化学反应的时空多尺度相互作用机理,发展机器学习驱动的高精度湍流模拟模型与计算方法。

四、2022年度资助计划

2022年度拟资助培育项目2025项左右,资助直接费用约为80万元/项,资助期限为3年,培育项目申请书中研究期限应填写“202311日— 20251231日”;拟资助重点支持项目68项左右,资助直接费用约为300万元/项,资助期限为4年,重点支持项目申请书中研究期限应填写“202311日— 20261231日”。

五、学校申报截止日期和材料报送

申请人按照项目指南要求填报申请书及附件材料。待学院审核通过后,请于202262016时前在基金委系统提交,同时将科研审核系统的预算审核表形式审查表的签字扫描版发至邮箱:zhaorui@hfut.edu.cn (邮件主题:可解释、可通用的下一代人工智能方法重大研究计划项目申报+姓名)纸质申报书、预算审核表和形式审查表各1份签章后于62116时前交至科技服务大厅

六、其他事项

1、具体要求详见基金委通知:https://www.nsfc.gov.cn/publish/portal0/tab434/info85521.htm

2、后续工作安排如有调整将另行通知,请及时关注国家自然科学基金委和学校网站。

科研院科研基地建设办公室(自然科学项目)联系电话:62901951(吴老师)、62901115(赵老师)

科研院科研基地建设办公室

2022519


合肥工业大学科研院 版权所有
Copyright©2019 news.hfut.edu.cn All rights reserved.